EXAMINATION BOARD

Total Time 3 hours Total Marks: 100

		TANATION BU		
Class: XII Time Allowed: 20 minutes		HIGHER SECONDARY SCHOOL CERTIFICATE EXAMINATION 2024 SUBJECT: MATHEMATICS MODEL PAPER		
Note: A	Attempt all questions from	this section. Each question c	carries one mark.	Marks: 20
i.	$\lim_{x \to 1} \left(1 + \frac{1}{2}\right)^{y} =$	1		
	$\lim_{y \to \infty} (1 + y)$	(b) 1	(c) a	$(d) e^{y}$
ii	$\lim_{x \to \infty} \frac{\sin 2x}{\sin 2x}$	(0) 1	(C) E	(u) e
11.	$\frac{1111}{x \to 0} \frac{1}{x}$	a. 1		
	(a) 2	(b) $\frac{1}{2}$	(c) ∞	(d) 0
iii.	$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$			
	(a) $x + 2$	(b) <i>x</i> – 2	(c) $x + 4$	(d) $x - 4$
iv.	If $y = e^{f(x)}$ then $\frac{dy}{dx} = :$			
	(a) $e^{f(x)}$	(b) $e^{f(x)}f'(x)$	(c) $\frac{e^{f(x)}}{r(x)}$	(d) none of these
V	$\int cotr dr =$		f(x)	
••	(a) $ln sinx + c$	(b) $tan x + c$	(c) $\sin x + c$	(d) $cosec^2x + c$
vi.	$\int \frac{dx}{\sqrt{2}}$			
	$x_{\sqrt{x^2-1}}(a) \sin^{-1}x + c$	(b) $\cos^{-1} x + c$	(c) $\tan^{-1} x + c$	(d) $\sec^{-1} x + c$
vii.	$\int \sec x dx = :$			
	(a) $\ln(secx tanx) + c$	(b) $ln(secx + tanx) + c$	(c) $secx + c$	(d) $tanx + c$
viii.	$\int cos 90 dx$ is equal to:			
	(a) $\cos 90^{\circ} + c$	(b) $\frac{c0390}{90} + c$	(c) 0	(d) $0.5x + c$
ix.	$\begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}$ gives the volum	ne of :		
	(a) parallelopiped	(b) parallelogram	(c) triangle	(d) none of these
х.	If a, b, c are coplanar vertical (a)	(b) 1 $(b \ c)$ is:	(c) = 1	(d) 2
xi.	If $e > 1$, then the conic is	s:		(d) 2
	(a) circle	(b) ellipse	(c) parabola	(d) hyperbola
xii.	The "e" of parabola is:			
	(a) $\frac{1}{2}$	(b) – 1	(c) 1	(d) 0
xiii.	If $b^2 = a^2(e^2 - 1)$, then the conic is called:			
	(a)ellipse	(b)hyperbola	(c)circle	(d) parabola
X1V.	If $m_1 = 2$ and $m_2 = -\frac{1}{2}$ the	hen tan θ will be:		(1) 10
VV	(a) ∞ Two intercent form of a	(b) U ^c	(c) 90°	(d) -1^{-1}
Λν.	(a) $ax + by + c = 0$	(b) $v - v_1 = m(x - x_1)$	(c) $\frac{x}{x} + \frac{y}{x} = 1$	(d) $v = mx + c$
vvi	The point $(-3, -1)$ with	h respect to the line $3x - 4y$	$a^{+}b^{+}$	
Δ V Ι.	(a) below	(b) above $(b) = above$	(c) right side	(d) none of these
xvii.	Intercepts of the line $2x$	-4y + 1 = 0 are		
	(a) $-\frac{1}{2}, \frac{1}{4}$	(b) $-\frac{1}{2}, -\frac{1}{4}$	$(c) - \frac{1}{2}, \frac{1}{4}$	(d) none of these
xviii.	$\frac{d}{dx}secx$:			
	$ax (a) - cosec^2 x$	(b) secxtanx	(c) $\sec^2 x$	(d) none of these
xix.	If $f(x) = \tan^{-1}3x$, then $f(x) = \tan^{-1}3x$	'(x) is:	<u>^</u>	<u>,</u>
	(a) $\frac{1}{1+9x^2}$ (b) $\frac{1}{9+x^2}$	$\frac{1}{x^2}$	(c) $\frac{3}{9+x^2}$	(d) $\frac{3}{1+9x^2}$
XX.	If $y = lncosx$, then dy	=:		
	$\frac{dx}{dx}$	-		
	(a) $\frac{1}{\sin x}$	(b) cosx	(c) -cotx	(d) tanx
	50.00			

END OF SECTION A

Page 2 of 2

Total Time 3 hours Total Marks: 100

